WAVELET BASIS IN THE SPACE $C^{\infty}[-1,1]$

ALEXANDER P. GONCHAROV AND ALI ŞAMIL KAVRUK

Abstract. We show that the polynomial wavelets suggested by T.Kilgor and J.Prestin in [12] form a topological basis in the space $C^{\infty}[-1,1]$.

During the last twenty years wavelets have found a lot of applications in mathematics, physics and engineering. Our interest in wavelets is related to their ability to represent a function, not only in the corresponding Hilbert space, but also in other function spaces with perhaps quiet different topology. Wavelets form unconditional Schauder bases in Lebesgue spaces ([16], [8], see also [3] and [11]) and in the Hardy space ([23], [16]). Weighted spaces $L^{p}(w), H^{p}(w)$ were considered in [4], [5]. For the multidimensional case, see also [19]. Wavelet topological bases were found in Sobolev spaces ([9], [2]) and in their generalizations, as in Besov ([1],[10]) and Triebel-Lizorkin ([14]) spaces. The list is far from being complete. Using "multiresolution analysis" of the space of continuous functions, Girgensohn and Prestin constructed in [6] (see also [18], [15] and [13]) a polynomial Schauder basis of optimal degree in the space $C[-1,1]$. Here we show that the polynomial wavelets suggested in [12] form a topological basis in the space $C^{\infty}[-1,1]$. As far as we know this is the first (but we are sure not the last!) example when wavelets form a topological basis in non-normed Fréchet space. Since the space is nuclear, the basis is absolute.

1. Polynomial wavelets.

T.Kilgor and J.Prestin suggested in [12] the following wavelets constructed from the Chebysev polynomials. Let Π_{n} denote the set of all polynomials of degree at most n. For $n \in \mathbb{N}_{0}:=\{0,1,2, \cdots\}$ and $|x| \leq 1$ let $T_{n}(x)=\cos (n \cdot \arccos x)$ be the Chebyshev polynomial of the first kind. Let $\omega_{0}(x)=1-x^{2}$ and for $n \in \mathbb{N}_{0}$ let

$$
\omega_{n+1}(x)=2^{n+1}\left(1-x^{2}\right) T_{1}(x) T_{2}(x) T_{4}(x) \cdots T_{2^{n}}(x)
$$

The scaling functions are given by the condition

$$
\varphi_{j, k}(x)=\frac{\omega_{j}(x)}{\omega_{j}^{\prime}\left(\cos \frac{k \pi}{2^{j}}\right)\left(x-\cos \frac{k \pi}{2^{j}}\right)}, \quad k=0,1, \cdots, 2^{j}, j \in \mathbb{N}_{0}
$$

2000 Mathematics Subject Classification. Primary 46E10; Secondary 46A35, 42C40.
Key words and phrases. Infinitely differentiable functions, topological bases, wavelets.

Now the Kilgor-Prestin wavelets are defined as

$$
\psi_{j, k}(x)=\frac{T_{2^{j}}(x)}{2^{j}\left(x-x_{j, k}\right)}\left[2 \omega_{j}(x)-\omega_{j}\left(x_{j, k}\right)\right], \quad k=0,1, \cdots, 2^{j}-1, j \in \mathbb{N}_{0}
$$

with $x_{j, k}=\cos \frac{(2 k+1) \pi}{2^{j+1}}$.
Then (see [12] for more details) the subspaces $W_{-1}:=\Pi_{1}$ and $W_{j}:=$ $\operatorname{span}\left\{\psi_{j, k}, k=0,1, \cdots, 2^{j}-1\right\}=\operatorname{span}\left\{T_{2^{j}+1}, T_{2^{j}+2}, \ldots, T_{2^{j+1}}\right\}, j \in \mathbb{N}_{0}$ give the decomposition

$$
\begin{equation*}
\Pi_{2^{j+1}}=W_{-1} \oplus W_{0} \oplus \cdots \oplus W_{j} \tag{1}
\end{equation*}
$$

which is orthogonal with respect to the inner product

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x)\left(1-x^{2}\right)^{-1 / 2} d x
$$

By H we denote the corresponding Hilbert space. Let $\varepsilon_{j, n}$ take the value 1 for $1 \leq n \leq 2^{j}-1$ and $\varepsilon_{j, 0}=\varepsilon_{j, 2^{j}}=1 / 2$.
Lemma 1. (Lemma 2.2 in [12]) The wavelets can be written as

$$
\psi_{j, k}(x)=2^{1-j} \sum_{n=2^{j}+1}^{2^{j+1}} T_{n}(x) T_{n}\left(x_{j, k}\right) \varepsilon_{j+1, n}
$$

Let us express the Chebyshev polynomials in terms of the system $\left\{\psi_{j, k}\right\}$.
Lemma 2. If $2^{j}+1 \leq n \leq 2^{j+1}$ for $j \in \mathbb{N}_{0}$ then

$$
T_{n}=\sum_{k=0}^{2^{j}-1} T_{n}\left(x_{j, k}\right) \psi_{j, k}
$$

Proof:
Since the decomposition (1) is orthogonal, we get $T_{n}=\sum_{k=0}^{2^{j}-1} d_{k}^{(n)} \psi_{j, k}$. To find $d_{k}^{(n)}$ we can use the following interpolational property of wavelets ([12], (2.4))

$$
\psi_{j, k}\left(x_{j, m}\right)=\delta_{m, k} \text { for } m, k=0,1, \ldots, 2^{j}-1
$$

Hence, $d_{k}^{(n)}=T_{n}\left(x_{j, k}\right)$.
Lemma 3. Any function $f \in H$ can be represented in the form

$$
f=\frac{1}{\pi}\left\langle f, T_{0}\right\rangle T_{0}+\frac{2}{\pi}\left\langle f, T_{1}\right\rangle T_{1}+\sum_{j=0}^{\infty} \sum_{k=0}^{2^{j}-1} c_{j, k} \psi_{j, k}
$$

where

$$
c_{j, k}=\frac{2}{\pi} \sum_{n=2^{j}+1}^{2^{j+1}}\left\langle f, T_{n}\right\rangle T_{n}\left(x_{j, k}\right)
$$

and convergence is considered with respect to the Hilbert norm.

Proof: The Chebyshev polynomials form a Hilbert basis in the space H. Since $\left\langle T_{n}, T_{n}\right\rangle=\pi / 2$ for $n \geq 1$ and $\left\langle T_{0}, T_{0}\right\rangle=\pi$, we have $f=\frac{1}{\pi}\left\langle f, T_{0}\right\rangle T_{0}+$ $\frac{2}{\pi}\left\langle f, T_{1}\right\rangle T_{1}+\frac{2}{\pi} \sum_{j=0}^{\infty} \sum_{n=2^{j}+1}^{2^{j+1}}\left\langle f, T_{n}\right\rangle T_{n}$. By using Lemma 2 and changing the order of summation we get the desired result.

Lemma 4. For any $j \in \mathbb{N}_{0}$ the matrices $X_{j}=\left(T_{n}\left(x_{j, k}\right)\right)_{n=2^{j}+1, k=0}^{2^{j+1}, 2^{j}-1}$ and $Y_{j}=2^{1-j}\left(T_{n}\left(x_{j, k}\right) \varepsilon_{j+1, n}\right)_{k=0, \quad n^{2}-2^{j+1}}^{2^{j} 1,2^{j+1}}$ are not singular.
Proof: We get the matrix Y_{j} if we transpose X_{j}, then multiply the last column by $1 / 2$ and take the common coefficient 2^{1-j}. Let us multiply the $p-$ th row of Y_{j} by the q-th column of X_{j} :

$$
2^{1-j} \sum_{n^{2} 2^{j}+1}^{2^{j+1}} T_{n}\left(x_{j, p}\right) T_{n}\left(x_{j, q}\right) \varepsilon_{j+1, n}=\psi_{j, p}\left(x_{j, q}\right)=\delta_{p, q} .
$$

Therefore, $Y_{j} \cdot X_{j}=I$ and both matrices are not singular.
Since $\operatorname{det}\left(Y_{j}\right)=2^{-j} \operatorname{det}\left(X_{j}\right)$, we get $\operatorname{det}\left(X_{j}\right)= \pm 2^{j / 2}$ and $\operatorname{det}\left(Y_{j}\right)=$ $\pm 2^{-j / 2}$.

Remark. If we multiply the $p-$ th row of X_{j} by the $q-$ th column of Y_{j}, then we get the orthogonality property (1.141) from [21].

2. Wavelet Schauder basis in $C^{\infty}[-1,1]$.

Topology τ of the space $C^{\infty}[-1,1]$ of all infinitely differentiable functions on $[-1,1]$ can be given by the system of norms

$$
|f|_{p}=\sup \left\{\left|f^{(i)}(x)\right|:|x| \leq 1, i \leq p\right\}, p \in \mathbb{N}_{0}
$$

The first basis in $C^{\infty}[-1,1]$, namely the Chebyshev polynomials, was found by Mityagin ([17], L.25). And what is more, by the Dynin-Mityagin theorem ([17], T.9), every topological basis of nuclear Fréchet space is absolute. In our case we see that the series $\frac{1}{\pi}\left\langle f, T_{0}\right\rangle T_{0}+\frac{2}{\pi} \sum_{n=1}^{\infty}\left\langle f, T_{n}\right\rangle T_{n}$ converges to $f \in C^{\infty}[-1,1]$ in the topology τ. The convergence is absolute, that is for any $p \in \mathbb{N}_{0}$ the series $\sum_{n=0}^{\infty}\left|\left\langle f, T_{n}\right\rangle\right| \cdot\left|T_{n}\right|_{p}$ converges. Furthermore, if $\left\{e_{n}, \xi_{n}\right\}$ is a biorthogonal system with the total (that is $\xi_{n}(f)=0, \forall n \Longrightarrow f=0$) over $C^{\infty}[-1,1]$ sequence of functionals and for every $p \in \mathbb{N}_{0}$ there exist $q \in \mathbb{N}_{0}$ and $C>0$ such that

$$
\left|e_{n}\right|_{p} \cdot\left|\xi_{n}\right|_{-q} \leq C \quad \text { for all } \quad n
$$

then $\left(e_{n}\right)$ is a Schauder basis in $C^{\infty}[-1,1]$.
Here and subsequently, $|\cdot|_{-q}$ denotes the dual norm: for a bounded linear functional ξ let $|\xi|_{-q}=\sup \left\{|\xi(f)|:|f|_{q} \leq 1\right\}$.

Theorem 1. The system $\left\{T_{0}, T_{1},\left(\psi_{j, k}\right)_{j=0, k=0}^{\infty, 2^{j}-1}\right\}$ is a topological basis in the space $C^{\infty}[-1,1]$.

Proof: We suggest two proofs of the theorem.
The $1^{\text {st }}$ proof is similar in spirit to the arguments of Mityagin in [17], L.25. Let $\xi_{0}(f)=\frac{1}{\pi}\left\langle f, T_{0}\right\rangle, \xi_{1}(f)=\frac{2}{\pi}\left\langle f, T_{1}\right\rangle$ and for $j \in \mathbb{N}_{0}, 0 \leq k \leq 2^{j}-1$ let
$\xi_{j, k}(f)=c_{j, k}$, where $c_{j, k}$ are given in Lemma 3. Then $\xi_{j, k}\left(\psi_{i, l}\right)=0$ if $i \neq j$, as is easy to see. For the wavelets and functionals of the same level we get

$$
\begin{aligned}
\xi_{j, k}\left(\psi_{j, l}\right) & =\frac{2}{\pi} \sum_{n=2^{j}+1}^{2^{j+1}} T_{n}\left(x_{j, k}\right) 2^{1-j} \sum_{m=2^{j+1}}^{2^{j+1}} T_{m}\left(x_{j, l}\right) \varepsilon_{j+1, m}\left\langle T_{m}(\cdot), T_{n}(\cdot)\right\rangle= \\
& =2^{1-j} \sum_{n=2^{j}+1}^{2^{j+1}} T_{n}\left(x_{j, k}\right) T_{n}\left(x_{j, l}\right) \varepsilon_{j+1, n}=\psi_{j, l}\left(x_{j, k}\right)=\delta_{l, k}
\end{aligned}
$$

Therefore the functionals $\left\{\xi_{0}, \xi_{1},\left(\xi_{j, k}\right)_{j=0, k=0}^{\infty, 2^{j}-1}\right\}$ are biorthogonal to the system $\left\{T_{0}, T_{1},\left(\psi_{j, k}\right)_{j=0, k=0}^{\infty, 2^{j}-1}\right\}$. Let us check that this sequence of functionals is total over $C^{\infty}[-1,1]$. Suppose that $\xi_{j, k}(f)=0$ for all j and k. For fixed j we get the system of 2^{j} linear equations $\left\langle f, T_{n}\right\rangle T_{n}\left(x_{j, k}\right)=0, n=$ $2^{j}+1, \cdots, 2^{j+1}$ with unknowns $\left\langle f, T_{n}\right\rangle$. By Lemma 4 the system has only the trivial solution. Together with $\xi_{0}(f)=\xi_{1}(f)=0$ it follows that $\left\langle f, T_{n}\right\rangle=0$ for all n. But the Chebyshev polynomials form a basis in $C^{\infty}[-1,1]$ and so $f=0$. Thus it is enough to check the Dynin-Mityagin condition. Let us fix $p \in \mathbb{N}_{0}$. For Chebyshev polynomials we have (see e.g.[21])

$$
\begin{equation*}
\left|T_{n}\right|_{m}=T_{n}^{(m)}(1)=\frac{n^{2}\left(n^{2}-1\right)\left(n^{2}-2^{2}\right) \cdots\left(n^{2}-(m-1)^{2}\right)}{1 \cdot 3 \cdot 5 \cdots(2 m-1)} . \tag{2}
\end{equation*}
$$

By Lemma 1,

$$
\begin{equation*}
\left|\psi_{j, k}\right|_{p} \leq 2^{1-j} \sup _{m \leq p} \sum_{n=2^{j}+1}^{2^{j+1}}\left|T_{n}\right|_{m} \leq 2^{1-j} 2^{j}\left|T_{2^{j+1}}\right|_{p} \leq 2^{(j+1) 2 p+1} \tag{3}
\end{equation*}
$$

On the other hand, by orthogonality

$$
\left\langle f, T_{n}\right\rangle=\int_{0}^{\pi} f(\cos t) \cos n t d t=\int_{0}^{\pi}[f(\cos t)-Q(\cos t)] \cos n t d t
$$

for any polynomial $Q \in \Pi_{n-1}$. As in [7] we can take the polynomial $Q=$ Q_{n-1} of best approximation to f on $[-1,1]$ in the norm $|\cdot|_{0}$. By the Jackson theorem (see e.g. [20], T.1.5) for any $q \in \mathbb{N}_{0}$ there exists a constant C_{q} such that for any $n>q$

$$
\left|f-Q_{n-1}\right|_{0} \leq C_{q} n^{-q}|f|_{q}
$$

Therefore, $\left|\left\langle f, T_{n}\right\rangle\right| \leq \pi C_{q} n^{-q}|f|_{q}$ and for $2^{j}>q$ we get

$$
\left|\xi_{j, k}\right|_{-q} \leq 2 C_{q} 2^{j}\left(2^{j}\right)^{-q}
$$

Taking into account (3) we see that the values $q=2 p+1$ and $C=4^{p+1} C_{q}$ will give us the desired conclusion.

In the $2^{\text {nd }}$ proof we introduce the operator A first on the basis $\left(T_{n}\right)$ and then by linearity. Let $A T_{0}=T_{0}, A T_{1}=T_{1}$ and $A T_{n}=\psi_{j, k}$ for $n=2^{j}+k+1$, where $j \in \mathbb{N}_{0}, k=0,1, \cdots, 2^{j}-1$. Let us show that for any $p \in \mathbb{N}_{0}$ there exist $q \in \mathbb{N}_{0}$ and $C>0$ such that

$$
\begin{equation*}
\left|\psi_{j, k}\right|_{p} \leq C\left|T_{2^{j}+k+1}\right|_{q} \quad \text { for all } j \text { and } k . \tag{4}
\end{equation*}
$$

For the left side we already have the bound (3). Also, from (2) we obtain

$$
\left|T_{2^{j}+k+1}\right|_{q} \geq\left|T_{2^{j}}\right|_{q} \geq \frac{1}{1 \cdot 3 \cdot 5 \cdots(2 q-1)}\left(2^{2 j}-q^{2}\right)^{q} .
$$

Clearly, the value $q=p+1$ provides the inequality (4) for large enough j. Hence there exists C depending only on p that ensures the result for all j and k.

From (4) we deduce that the operator

$$
A: C^{\infty}[-1,1] \longrightarrow C^{\infty}[-1,1]: f=\sum_{0}^{\infty} \xi_{n} T_{n} \mapsto \sum_{0}^{\infty} \xi_{n} A T_{n}
$$

is well defined and continuous. If $A f=0$, then for any $j \in \mathbb{N}_{0}$ we have $\sum_{k=0}^{2^{j}-1} \xi_{2^{j}+k} \psi_{j, k}=0$. Lemma 4 implies $\xi_{2^{j}+k}=0$. Therefore, $\operatorname{ker} A=0$. In the same way, one can easily show that A is surjective. Therefore the operator A is a continuous linear bijection. By the open mapping theorem, A is an isomorphism. Thus the system $\left\{T_{0}, T_{1},\left(\psi_{j, k}\right)_{j=0, k=0}^{\infty, 2^{j}-1}\right\}$ is a topological basis and what is more, it is equivalent to the classical basis $\left(T_{n}\right)_{0}^{\infty}$ (see e.g. [22] for the definition of equivalent bases).

Remark. Since $\left\{T_{0}, T_{1},\left(\psi_{j, k}\right)_{j=0, k=0}^{\infty, 2^{j}-1}\right\}$ is a block-system with respect to the basis $\left(T_{n}\right)_{0}^{\infty}$, one can suggest also a third proof based on a generalization of Corollary 7.3 from [22], Ch. 1 for the case of countably normed space.

References

[1] Almedia A. Wavelet bases in generalized Besov spaces. J Math Anal Appl 2005; 304: 198-211.
[2] Boigelot Ch. Wavelet in Sobolev spaces. Bull Soc Roy Sci Liége 2000; 69: 157-246.
[3] Daubechies I. Ten Lectures on Wavelets: Philadelphia 1992.
[4] García-Cuerva J.and Kazarian K. Calderon-Zygmund operators and unconditional bases of weighted Hardy spaces. Studia Math 1994; 109: 257276.
[5] García-Cuerva J.and Kazarian K. Spline wavelet bases of weighted L^{p} spaces, $1 \leq p<\infty$. Proc Amer Math Soc 1995; 123: 433-439.
[6] Girgensohn R. and Prestin J. Lebesgue constraints for an orthogonal polynomial Schauder basis. J Comput Anal Appl 2000; 2: 159-175.
[7] Goncharov A. Spaces of Whitney functions with basis. Math Nachr 2000; 220: 45-57.
[8] Gripenberg G. Wavelet bases in $L^{p}(\mathbb{R})$. Studia Math 1993; 106: 175187.
[9] Gripenberg G. Unconditional bases of wavelets for Sobolev spaces. SIAM J Math Anal 1993; 24: 1030-1042.
[10] Haroske D. and Triebel H. Wavelet bases and entropy numbers in weighted function spaces. Math. Nachr 2005; 278: 108-132.
[11] Hernández E. and Weiss G. A First Course on Wavelets: CRC Press 1996.
[12] Kilgore T. and Prestin J. Polynomial wavelets on the interval. Constr Approx 1996; 12: 95-110.
[13] Kilgore T., Prestin J. and Selig K. Orthogonal algebraic polynomial Schauder bases of optimal degree. J Fourier Anal Appl 1996; 2: 597-610.
[14] Kyriazis G. and Petrushev P. New bases for Triebel-Lizorkin and Besov spaces. Trans Amer Math Soc 2002; 354: 749-776.
[15] Lorentz R.A. and Sahakian A.A. Orthogonal trigonometric Schauder bases of optimal degree for $C(K)$. J Fourier Anal Appl 1994; 1: 103-112.
[16] Meyer Y. Ondelettes et opérateurs. Paris: Hermann 1990.
[17] Mitjagin B.S. Approximate dimension and bases in nuclear spaces. Russian Math Surveys 1961; 16: 59-127.
[18] Offin D. and Oskolkov K. A note on orthonormal polynomial bases and wavelets. Constr Approx 1993; 9: 319-325.
[19] Pompe W. Unconditional biorthogonal wavelet bases in $L^{p}\left(\mathbb{R}^{d}\right)$. Colloq Math 2002; 92: 19-34.
[20] Rivlin T.J. An introduction to the approximation of functions: Blaisdell Publishing Co 1969.
[21] Rivlin T.J. The Chebyshev Polynomials. New York: Wiley 1974.
[22] Singer I. Bases in Banach spaces. I. Berlin: Springer-Verlag 1970.
[23] Strömberg J.O. A modified Franklin system and higher-order spline systems on \mathbb{R}^{n} as unconditional bases for Hardy spaces, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II. Chicago: Wadsworth 1983.
© Goncharov and Kavruk; Licensee Bentham Open.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons. org/licenses/by/2.5/), which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.

