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Abstract. We show that the polynomial wavelets suggested by T.Kilgor
and J.Prestin in [12] form a topological basis in the space C∞[−1, 1].

During the last twenty years wavelets have found a lot of applications in
mathematics, physics and engineering. Our interest in wavelets is related to
their ability to represent a function, not only in the corresponding Hilbert
space, but also in other function spaces with perhaps quiet different topol-
ogy. Wavelets form unconditional Schauder bases in Lebesgue spaces ([16],
[8], see also [3] and [11]) and in the Hardy space ([23], [16]). Weighted spaces
Lp(w), Hp(w) were considered in [4], [5]. For the multidimensional case, see
also [19]. Wavelet topological bases were found in Sobolev spaces ([9], [2])
and in their generalizations, as in Besov ([1],[10]) and Triebel-Lizorkin ([14])
spaces. The list is far from being complete. Using ”multiresolution analysis”
of the space of continuous functions, Girgensohn and Prestin constructed
in [6] (see also [18], [15] and [13]) a polynomial Schauder basis of optimal
degree in the space C[−1, 1]. Here we show that the polynomial wavelets
suggested in [12] form a topological basis in the space C∞[−1, 1]. As far
as we know this is the first (but we are sure not the last!) example when
wavelets form a topological basis in non-normed Fréchet space. Since the
space is nuclear, the basis is absolute.

1. Polynomial wavelets.

T.Kilgor and J.Prestin suggested in [12] the following wavelets constructed
from the Chebysev polynomials. Let Πn denote the set of all polynomi-
als of degree at most n. For n ∈ N0 := {0, 1, 2, · · · } and | x | ≤ 1 let
Tn(x) = cos(n ·arccos x) be the Chebyshev polynomial of the first kind. Let
ω0(x) = 1− x2 and for n ∈ N0 let

ωn+1(x) = 2n+1(1− x2) T1(x) T2(x) T4(x) · · ·T2n(x).

The scaling functions are given by the condition

ϕj, k(x) =
ωj(x)

ω′j(cos kπ
2j )(x− cos kπ

2j )
, k = 0, 1, · · · , 2j, j ∈ N0.
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Now the Kilgor-Prestin wavelets are defined as

ψj, k(x) =
T2j(x)

2j (x− xj, k)
[2ωj(x)− ωj(xj, k)], k = 0, 1, · · · , 2j − 1, j ∈ N0

with xj, k = cos (2k+1)π
2j+1 .

Then (see [12] for more details) the subspaces W−1 := Π1 and Wj :=
span{ψj,k, k = 0, 1, · · · , 2j − 1} = span{T2j+1, T2j+2, ..., T2j+1}, j ∈ N0 give
the decomposition

Π2j+1 = W−1 ⊕W0 ⊕ · · · ⊕Wj (1)

which is orthogonal with respect to the inner product

〈f, g〉 =

∫ 1

−1

f(x)g(x)(1− x2)−1/2 dx.

By H we denote the corresponding Hilbert space. Let εj, n take the value
1 for 1 ≤ n ≤ 2j − 1 and εj, 0 = εj, 2j = 1/2.

Lemma 1. (Lemma 2.2 in [12]) The wavelets can be written as

ψj, k(x) = 21−j

2j+1∑

n=2j+1

Tn(x)Tn(xj, k)εj+1,n.

Let us express the Chebyshev polynomials in terms of the system {ψj,k}.
Lemma 2. If 2j + 1 ≤ n ≤ 2j+1 for j ∈ N0 then

Tn =
2j−1∑

k=0

Tn(xj, k)ψj,k.

Proof :

Since the decomposition (1) is orthogonal, we get Tn =
∑2j−1

k=0 d
(n)
k ψj,k. To

find d
(n)
k we can use the following interpolational property of wavelets ([12],

(2.4))

ψj, k(xj, m) = δm, k for m, k = 0, 1, ..., 2j − 1.

Hence, d
(n)
k = Tn(xj, k). 2

Lemma 3. Any function f ∈ H can be represented in the form

f =
1

π
〈f, T0〉T0 +

2

π
〈f, T1〉T1 +

∞∑
j=0

2j−1∑

k=0

cj, kψj, k

where

cj, k =
2

π

2j+1∑

n=2j+1

〈f, Tn〉Tn(xj, k)

and convergence is considered with respect to the Hilbert norm.
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Proof : The Chebyshev polynomials form a Hilbert basis in the space H.
Since 〈Tn, Tn〉 = π/2 for n ≥ 1 and 〈T0, T0〉 = π, we have f = 1

π
〈f, T0〉T0 +

2
π
〈f, T1〉T1 + 2

π

∑∞
j=0

∑2j+1

n=2j+1〈f, Tn〉Tn. By using Lemma 2 and changing the
order of summation we get the desired result. 2

Lemma 4. For any j ∈ N0 the matrices Xj = (Tn(xj, k))
2j+1, 2j−1

n=2j+1, k=0 and

Yj = 21−j (Tn(xj, k) εj+1, n) 2j−1, 2j+1

k=0, n=2j+1 are not singular.

Proof : We get the matrix Yj if we transpose Xj, then multiply the last
column by 1/2 and take the common coefficient 21−j. Let us multiply the
p−th row of Yj by the q−th column of Xj :

21−j

2j+1∑

n=2j+1

Tn(xj, p)Tn(xj, q)εj+1,n = ψj, p(xj, q) = δp, q.

Therefore, Yj ·Xj = I and both matrices are not singular.
Since det(Yj) = 2−j det(Xj), we get det(Xj) = ±2j/2 and det(Yj) =

±2−j/2. 2

Remark. If we multiply the p−th row of Xj by the q−th column of Yj,
then we get the orthogonality property (1.141) from [21].

2. Wavelet Schauder basis in C∞[−1, 1].

Topology τ of the space C∞[−1, 1] of all infinitely differentiable functions
on [−1, 1] can be given by the system of norms

|f |p = sup{|f (i)(x)| : | x | ≤ 1, i ≤ p}, p ∈ N0.

The first basis in C∞[−1, 1], namely the Chebyshev polynomials, was found
by Mityagin ([17], L.25). And what is more, by the Dynin-Mityagin theorem
([17], T.9), every topological basis of nuclear Fréchet space is absolute. In
our case we see that the series 1

π
〈f, T0〉T0 + 2

π

∑∞
n=1〈f, Tn〉Tn converges to

f ∈ C∞[−1, 1] in the topology τ . The convergence is absolute, that is for any
p ∈ N0 the series

∑∞
n=0 |〈f, Tn〉| · |Tn|p converges. Furthermore, if {en, ξn} is

a biorthogonal system with the total ( that is ξn(f) = 0,∀n =⇒ f = 0) over
C∞[−1, 1] sequence of functionals and for every p ∈ N0 there exist q ∈ N0

and C > 0 such that

| en|p · | ξn|−q ≤ C for all n,

then (en) is a Schauder basis in C∞[−1, 1].
Here and subsequently, | · |−q denotes the dual norm: for a bounded linear

functional ξ let | ξ|−q = sup{| ξ(f)| : |f |q ≤ 1}.
Theorem 1. The system {T0, T1, (ψj, k)

∞, 2j−1
j=0, k=0} is a topological basis in the

space C∞[−1, 1].

Proof : We suggest two proofs of the theorem.
The 1st proof is similar in spirit to the arguments of Mityagin in [17], L.25.
Let ξ0(f) = 1

π
〈f, T0〉, ξ1(f) = 2

π
〈f, T1〉 and for j ∈ N0, 0 ≤ k ≤ 2j − 1 let
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ξj, k(f) = cj, k, where cj, k are given in Lemma 3. Then ξj, k(ψi, l) = 0 if i 6= j,
as is easy to see. For the wavelets and functionals of the same level we get

ξj, k(ψj, l) =
2

π

2j+1∑

n=2j+1

Tn(xj, k) 21−j

2j+1∑

m=2j+1

Tm(xj, l)εj+1,m〈Tm(·), Tn(·)〉 =

= 21−j

2j+1∑

n=2j+1

Tn(xj, k)Tn(xj, l)εj+1,n = ψj, l(xj, k) = δl, k.

Therefore the functionals {ξ0, ξ1, (ξj, k)
∞, 2j−1
j=0, k=0} are biorthogonal to the

system {T0, T1, (ψj, k)
∞, 2j−1
j=0, k=0}. Let us check that this sequence of functionals

is total over C∞[−1, 1]. Suppose that ξj, k(f) = 0 for all j and k. For
fixed j we get the system of 2j linear equations 〈f, Tn〉Tn(xj, k) = 0, n =
2j +1, · · · , 2j+1 with unknowns 〈f, Tn〉. By Lemma 4 the system has only the
trivial solution. Together with ξ0(f) = ξ1(f) = 0 it follows that 〈f, Tn〉 = 0
for all n. But the Chebyshev polynomials form a basis in C∞[−1, 1] and so
f = 0. Thus it is enough to check the Dynin-Mityagin condition. Let us fix
p ∈ N0. For Chebyshev polynomials we have (see e.g.[21])

|Tn |m = T (m)
n (1) =

n2 (n2 − 1) (n2 − 22) · · · (n2 − (m− 1)2)

1 · 3 · 5 · · · (2m− 1)
. (2)

By Lemma 1,

|ψj, k |p ≤ 21−j sup
m≤p

2j+1∑

n=2j+1

|Tn |m ≤ 21−j 2j |T2j+1 | p ≤ 2(j+1)2p+1.
(3)

On the other hand, by orthogonality

〈f, Tn〉 =

∫ π

0

f(cos t) cos nt dt =

∫ π

0

[f(cos t)−Q(cos t)] cos nt dt

for any polynomial Q ∈ Πn−1. As in [7] we can take the polynomial Q =
Qn−1 of best approximation to f on [−1, 1] in the norm | · |0. By the Jackson
theorem (see e.g. [20], T.1.5) for any q ∈ N0 there exists a constant Cq such
that for any n > q

| f −Qn−1 | 0 ≤ Cq n−q | f | q.
Therefore, |〈f, Tn〉| ≤ π Cq n−q | f | q and for 2j > q we get

| ξj, k|−q ≤ 2 Cq2
j (2j)−q.

Taking into account (3) we see that the values q = 2p + 1 and C = 4p+1Cq

will give us the desired conclusion.
In the 2nd proof we introduce the operator A first on the basis (Tn) and

then by linearity. Let AT0 = T0, AT1 = T1 and ATn = ψj, k for n = 2j+k+1,
where j ∈ N0, k = 0, 1, · · · , 2j − 1. Let us show that for any p ∈ N0 there
exist q ∈ N0 and C > 0 such that

|ψj, k| p ≤ C|T2j+k+1| q for all j and k. (4)
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For the left side we already have the bound (3). Also, from (2) we obtain

|T2j+k+1| q ≥ |T2j | q ≥ 1

1 · 3 · 5 · · · (2q − 1)
(22j − q2)q.

Clearly, the value q = p + 1 provides the inequality (4) for large enough j.
Hence there exists C depending only on p that ensures the result for all j
and k.

From (4) we deduce that the operator

A : C∞[−1, 1] −→ C∞[−1, 1] : f =
∞∑
0

ξn Tn 7→
∞∑
0

ξn ATn

is well defined and continuous. If Af = 0, then for any j ∈ N0 we have∑2j−1
k=0 ξ2j+k ψj, k = 0. Lemma 4 implies ξ2j+k = 0. Therefore, kerA = 0.

In the same way, one can easily show that A is surjective. Therefore the
operator A is a continuous linear bijection. By the open mapping theorem,

A is an isomorphism. Thus the system {T0, T1, (ψj, k)
∞, 2j−1
j=0, k=0} is a topological

basis and what is more, it is equivalent to the classical basis (Tn)∞0 (see e.g.
[22] for the definition of equivalent bases).

2

Remark. Since {T0, T1, (ψj, k)
∞, 2j−1
j=0, k=0} is a block-system with respect to

the basis (Tn)∞0 , one can suggest also a third proof based on a generalization
of Corollary 7.3 from [22], Ch.1 for the case of countably normed space.
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